Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | \(-h_{6}-2h_{5}-3h_{4}+3h_{3}+2h_{2}+h_{1}\) | \(g_{12}\) | \(g_{14}+g_{13}+2g_{1}\) | \(g_{4}\) | \(g_{16}\) |
weight | \(0\) | \(2\omega_{1}\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}+14\psi\) | \(\omega_{1}+\omega_{2}\) | \(2\omega_{2}-14\psi\) | \(2\omega_{1}+2\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}+14\psi} \) → (2, 0, 14) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0) | \(\displaystyle V_{2\omega_{2}-14\psi} \) → (0, 2, -14) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}} \) → (2, 2, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-2\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{1}+2\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}+14\psi\) \(\omega_{2}+14\psi\) \(-2\omega_{1}+2\omega_{2}+14\psi\) \(\omega_{1}-\omega_{2}+14\psi\) \(-\omega_{1}+14\psi\) \(-2\omega_{2}+14\psi\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(2\omega_{2}-14\psi\) \(\omega_{1}-14\psi\) \(-\omega_{1}+\omega_{2}-14\psi\) \(2\omega_{1}-2\omega_{2}-14\psi\) \(-\omega_{2}-14\psi\) \(-2\omega_{1}-14\psi\) | \(2\omega_{1}+2\omega_{2}\) \(3\omega_{2}\) \(3\omega_{1}\) \(-2\omega_{1}+4\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(2\omega_{1}-4\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) \(-3\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}+14\psi}\oplus M_{\omega_{2}+14\psi}\oplus M_{-2\omega_{1}+2\omega_{2}+14\psi}\oplus M_{\omega_{1}-\omega_{2}+14\psi} \oplus M_{-\omega_{1}+14\psi}\oplus M_{-2\omega_{2}+14\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}-14\psi}\oplus M_{\omega_{1}-14\psi}\oplus M_{-\omega_{1}+\omega_{2}-14\psi}\oplus M_{2\omega_{1}-2\omega_{2}-14\psi} \oplus M_{-\omega_{2}-14\psi}\oplus M_{-2\omega_{1}-14\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{3\omega_{2}}\oplus M_{3\omega_{1}}\oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}} \oplus M_{4\omega_{1}-2\omega_{2}}\oplus 2M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}} \oplus 3M_{0}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}}\oplus M_{-3\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}+14\psi}\oplus M_{\omega_{2}+14\psi}\oplus M_{-2\omega_{1}+2\omega_{2}+14\psi}\oplus M_{\omega_{1}-\omega_{2}+14\psi} \oplus M_{-\omega_{1}+14\psi}\oplus M_{-2\omega_{2}+14\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}-14\psi}\oplus M_{\omega_{1}-14\psi}\oplus M_{-\omega_{1}+\omega_{2}-14\psi}\oplus M_{2\omega_{1}-2\omega_{2}-14\psi} \oplus M_{-\omega_{2}-14\psi}\oplus M_{-2\omega_{1}-14\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{3\omega_{2}}\oplus M_{3\omega_{1}}\oplus M_{-2\omega_{1}+4\omega_{2}}\oplus 2M_{\omega_{1}+\omega_{2}} \oplus M_{4\omega_{1}-2\omega_{2}}\oplus 2M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{2\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}} \oplus 3M_{0}\oplus M_{3\omega_{1}-3\omega_{2}}\oplus 2M_{-2\omega_{1}+\omega_{2}}\oplus 2M_{\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+2\omega_{2}} \oplus 2M_{-\omega_{1}-\omega_{2}}\oplus M_{2\omega_{1}-4\omega_{2}}\oplus M_{-3\omega_{1}}\oplus M_{-3\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) |
2 & | -1\\ |
-1 & | 2\\ |